EIC Kinematics for Fixed Target Experimentalists

E. Long (UNH)

Abstract
This note demonstrates how to relate kinematic variables used in fixed-target electron beam experiments to those used in an electron-ion collider. It also demonstrates how nucleon-scaling of these variables commonly used in Jefferson Lab experiments can be translated to collider definitions.
1 Laboratory Frame Definitions

Throughout this tech note we’ll be using natural units where $\hbar = c = 1$ and the laboratory frame unless otherwise specified. At fixed-target facilities, such as Jefferson Lab, the majority of the momentum is carried by the electron and so variables are defined according to the electron beam where $+\hat{z}$ is oriented along the electron beam. The main kinematic variables used are the electron polar scattering angle θ_e, the electron azimuthal scattering angle ϕ_e, the initial electron 4-momenta $k = (E_e, k)$, the final electron 4-momenta $k' = (E'_e, k')$, the initial target 4-momenta $p = (E_h, p)$ and the final hadronic 4-momenta $p' = (E'_h, p')$. Given that the target is fixed, $E_h = m_h$ where m_h is the target mass and $p = 0$ (unless hitting quarks or a nucleon inside of an $N > 1$ nucleus, in which case it is on the scale of the Fermi momentum and still significantly less than the nuclear mass). The fixed-target 4-momenta are described by

$$k_{\text{JLab}} = \begin{pmatrix} E_e \\ 0 \\ 0 \\ E_e \end{pmatrix}, \quad k'_{\text{JLab}} = \begin{pmatrix} E'_e \\ E'_e \sin \theta_e \cos \phi_e \\ E'_e \sin \theta_e \sin \phi_e \\ E'_e \cos \theta_e \end{pmatrix}$$

(1)

$$p_{\text{JLab}} = \begin{pmatrix} E_h \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad p'_{\text{JLab}} = \begin{pmatrix} E'_h \\ p'_{hx} \\ p'_{hy} \\ p'_{hz} \end{pmatrix}$$

(2)

For electron-ion collider experiments, the majority of the momentum is carried by the ion beam and so variables are defined such that $+\hat{z}$ is oriented along the ion beam and against the electron beam. A detailed description is given in [1]. Given that the scattered electron is then often knocked back towards the direction it came from, the scattering angle θ_1 is used. We could also use the same scattering angle defined for fixed-target experiments, θ_e, where $\theta_1 + \theta_e = \pi$. It also makes sense to define γ as the scattering angle of the struck quark or hadron. H' and p' are summed over all particles h that are produced in the final

Figure 1: Common kinematic variables for Jefferson Lab experiments.
Figure 2: Common kinematic variables for electron-ion collider experiments.

state. The EIC 4-momenta are thus described by

$$k_{\text{EIC}} = \begin{pmatrix} E_e \\ 0 \\ 0 \\ -E_e \end{pmatrix}, \quad k'_{\text{EIC}} = \begin{pmatrix} E'_e \\ E'_e \sin \theta_e \cos \phi_e \\ E'_e \sin \theta_e \sin \phi_e \\ E'_e \cos \theta_e \end{pmatrix} = \begin{pmatrix} E'_e \\ E'_e \sin \theta_e \cos \phi_e \\ E'_e \sin \theta_e \sin \phi_e \\ -E'_e \cos \theta_e \end{pmatrix}$$ (3)

$$p_{\text{EIC}} = \begin{pmatrix} E_h \\ 0 \\ 0 \\ E_h \end{pmatrix}, \quad p'_{\text{EIC}} = \begin{pmatrix} E'_h \\ p'_{hx} \\ p'_{hy} \\ p'_{hz} \end{pmatrix}$$ (4)

Note that the two major differences between the JLab 4-momenta and the EIC 4-momenta are the sign reversal of k_z that comes from the change of \hat{z} reference from the electron beam to the ion beam, and the non-zero p_z in the case of an ion beam.

For collider experiments, it’s often easier to do measurements and thus determine kinematics from the hadronic flow, which is discussed in detail in [1]. For this technical note, we’ll only concern ourselves with the lepton flow in order to connect definitions through the Lorentz-invariant quantities where the final result is insensitive to which method is used.

If we define an EIC experiment using the fixed-target definitions for $+\hat{z}$ oriented along the electron beam and use the electron scattering angle θ_e while also trading a fixed target for an ion beam oriented along $-\hat{z}$, we get the following definitions of 4-momenta that will be used throughout the rest of this technical note.

$$k = \begin{pmatrix} E_e \\ 0 \\ 0 \\ E_e \end{pmatrix}, \quad k' = \begin{pmatrix} E'_e \\ E'_e \sin \theta_e \cos \phi_e \\ E'_e \sin \theta_e \sin \phi_e \\ E'_e \cos \theta_e \end{pmatrix}$$ (5)
\[p = \begin{pmatrix} E_h \\ 0 \\ 0 \\ -E_h \end{pmatrix} \quad \quad p' = \begin{pmatrix} E'_h \\ p'_{hx} \\ p'_{hy} \\ -p'_{hz} \end{pmatrix} \quad (6) \]

2 Mandelstam Variables

In order to calculate the Lorentz invariant quantities in each case, we’ll need to use the Mandelstam variables that are defined by

\[t = (k' - k)^2 = (p' - p)^2 \quad (7) \]
\[s = (k + p)^2 = (k' + p')^2 \quad (8) \]
\[u = (k' - p)^2 = (p' - k)^2 \quad (9) \]

In fixed-target experiments, we are most familiar with \(Q^2 = -t \). For collider experiments, the center-of-mass energy \(\sqrt{s_{\text{EIC}}} = \sqrt{4E_eE_h} \) is often used as a frame of reference.

In fixed target experiments, \(E_h = m_h \) (target mass), \(p^2 \neq 0 \), and \(\sqrt{s_{\text{JLab}}} = \sqrt{2m_hE_e + m_h^2} \).

3 Lorentz Invariant Terms

We define the Lorentz invariant terms either as functions of the Mandelstam variables or of the individual 4-momenta where we also define the \(q \)-vector

\[q = k - k' = d' - d = \begin{pmatrix} E_e - E'_e \\ -E'_e \sin \theta_e \cos \phi_e \\ -E'_e \sin \theta_e \sin \phi_e \\ E_e - E'_e \cos \theta_e \end{pmatrix} \quad (10) \]

This gives us our fundamental definitions

\[Q^2 = -t = -q^2 \quad (11) \]
\[x = \frac{Q^2}{2pq} \quad (12) \]
\[y = \frac{pq}{pk} \quad (13) \]
\[W^2 = (p')^2 = (p + q)^2 \quad (14) \]

Note that in the case of colliders, we can directly relate \(x, y, \) and \(W^2 \) to the Mandelstam variables by

\[x = \frac{-t}{u + s} \quad (15) \]
\[y = \frac{u + s}{s} = \frac{Q^2}{sx} \] (16)

\[W^2 = s + t + u \] (17)

but this only works since \(p^2 = 0 \), which is not the case in fixed-target experiments and must be taken into account.

For \(Q^2 \), both \(k^2 \) and \(k'^2 \) are zero leaving \(2kk' \) as the only non-zero term, which leads to the familiar definition of

\[Q^2 = 4E_eE'_e \sin^2 \left(\frac{\theta_e}{2} \right) \] (18)

However, note that if \(\theta_1 \) is used it takes the form \(Q^2 = 4E_eE'_e \cos^2 \left(\frac{\theta_1}{2} \right) \), which is equivalent to Eq. (18).

The familiar definitions of Bjorken-\(x \) are significantly different between EIC and fixed-target experiments and deserve particular attention. From Eq. (12), the denominator \(2pq \) gains an extra term in EIC experiments that is absent from fixed-target experiments due to the non-zero component of \(p_z \). This term is similar to the energy transfer \(\nu = E_e - E'_e \), except that it only accounts for the energy transferred along the \(\hat{z} \) direction and will be defined as

\[\nu_z = E_e - E'_e \cos \theta_e \] (19)

which leads to a final definition of \(x \) as

\[x = \frac{Q^2}{2E_h(\nu + \nu_z)} \] (20)

where the only allowed values are \(0 \leq x \leq 1 \).

As mentioned above, for fixed-target experiments \(p_z = 0 \) leads to \(\nu_z = 0 \) and \(E_h = m_h \), which causes Eq. (20) to become the more familiar

\[x_{\text{Fixed}} = \frac{Q^2}{2m_h\nu} \] (21)

It is also important to note that often times in Jefferson Lab experiments that \(x_{\text{Fixed}} \) is scaled to the nucleon mass \((m_p) \)

\[x_{\text{JLab}} = \frac{Q^2}{2m_p\nu} = N x_{\text{Fixed}} \] (22)

such that the quasi-elastic peak is always centered at \(x_{\text{JLab}} = 1 \) and the nuclear elastic peak is centered around \(x_{\text{JLab}} = N \) where \(N \) is the number of nucleons in the target. It is non-trivial to scale the collider \(x \) to the nucleon mass (since \(p \neq 0 \) and \(E_h = \sqrt{m^2 + p^2} \)), but we can easily scale it to the average nucleon energy in the ion beam where \(E_h = NE_p \), which gives

\[x = \frac{Q^2}{2NE_p(\nu + \nu_z)} = \frac{x_p}{N} \] (23)
where

\[x_p = \frac{Q^2}{2E_p(\nu + \nu_z)} \]

(24)

has allowed values from \(0 \leq x_p \leq N \). This also becomes identical to Eq. (22) in fixed-target experiments where \(p_z = 0 \) causes \(\nu_z = 0 \) and \(E_p = m_p \).

Similarly, there are extra terms in \(y \) when doing a collider experiment that are non-existent when doing a fixed-target experiment. Following Eq. (13), these differences again rise from \(p_z \neq 0 \) in a collider experiment in both the \(pq \) and \(pk \) terms. For JLab experiments, the common definitions are

\[p_{JLab}^2 = E_h \nu \]

(25)

\[p_{JLab}^2 = E_{e}E_h \]

(26)

\[y_{JLab} = \frac{\nu}{E_{e}} = 1 - \frac{E'_e}{E_e} \cos^2 \left(\frac{\theta_e}{2} \right) \]

(27)

When we replace the fixed target with an ion beam, these change to

\[pq = E_h(\nu + \nu_z) \]

(28)

\[pk = 2E_eE_h \]

(29)

\[y = \frac{\nu + \nu_z}{2E_{e}} = 1 - \left(\frac{E'_e}{E_e} \right) \left(\frac{1 + \cos \theta_e}{2} \right) = 1 - \frac{E'_e}{E_e} \cos^2 \left(\frac{\theta_e}{2} \right) \]

(30)

The invariant mass \(W \) is unique in that the fixed-target definitions gain an extra term that cancels in the EIC definitions. For fixed targets, \(p_z = 0 \) causes \(p^2 = E_h^2 = m_h^2 \) whereas in the collider \(p_z = |p| \) causes \(p^2 = 0 \). From Eq. (14) for a fixed-target experiment we get

\[p_{JLab}^2 = m_h^2 \]

\[2p_{JLab}q_{JLab} = 2E_h\nu = 2m_h\nu \]

\[q_{JLab}^2 = -Q^2 \]

(31)

\[W_{JLab}^2 = m_h^2 + 2m_h\nu - Q^2 \]

(32)

and for a collider experiment we get

\[p^2 = 0 \]

\[2pq = 2E_h(\nu + \nu_z) \]

\[q^2 = -Q^2 \]

(33)

\[W^2 = 2E_h(\nu + \nu_z) - Q^2 \]

(34)

The collider definition of \(W^2 \) can then be simply related to \(x \) and \(Q^2 \) by

\[W^2 = Q^2 \frac{1 - x}{x} \]

(35)

but this definition should be considered cautiously by fixed-target experimentalists, as we would have to modify it as

\[W_{JLab}^2 - m_p^2 = Q^2 \frac{1 - x_{JLab}}{x_{JLab}} \]

(36)

if scaling to the nucleon mass, or replace \(m_p \) with the mass of the target \(m_h \) and \(x_{JLab} \) with \(x_{Fixed} \) for the total invariant mass.
References